Write the equation x+5y-2= 0 in normal form. Then, find the length of the normal and the length and the angle makes with the positive x-axis.

Respuesta :

Answer:

normal form: y = -x/5 + 2/5

Answer with explanation:

≡The given equation of line is :

      x + 5 y -2=0------------(1)

⇒A line having equation, Ax +By +C=0, can be written in normal form as Follows:

   [tex]\rightarrow \frac{Ax}{\sqrt{A^2+B^2}}+ \frac{By}{\sqrt{A^2+B^2}}+ \frac{C}{\sqrt{A^2+B^2}}=0[/tex]

⇒Length of Normal

               [tex]=|\frac{C}{\sqrt{A^2+B^2}}|[/tex]        

 Let, A=Angle made by line with positive Direction of X axis.

[tex]\sin A=\frac{A}{\sqrt{A^2+B^2}}\\\\ \cos A=\frac{B}{\sqrt{A^2+B^2}}[/tex]

⇒Line, 1 in normal form can be written as:

   [tex]x + 5 y=2\\\\\rightarrow\frac{x}{\sqrt{1^2+5^2}}+\frac{5 y}{\sqrt{1^2+5^2}}=\frac{2}{\sqrt{1^2+5^2}}\\\\\rightarrow\frac{x}{\sqrt{26}}+\frac{5 y}{\sqrt{26}}=\frac{2}{\sqrt{26}}[/tex]

⇒Length of Normal

                 [tex]=\frac{2}{\sqrt{26}}\\\\=0.40\text{approx}[/tex]

Writing equation of line in slope intercept form

[tex]5 y= -x +2\\\\y=\frac{-x}{5}+\frac{2}{5}[/tex]

⇒Comparing with general slope intercept form of line:

   y = m x +c,

or, y = x tan A +c

[tex]m=\tan A=\frac{-1}{5}[/tex]