Respuesta :
Answer:
5,170 J.
Explanation:
- The amount of heat absorbed by the reaction = the amount of heat released from the calorimeter.
- the amount of heat released from the calorimeter (Q) can be calculated from the relation:
Q = m.c.ΔT.
where, Q is the amount of heat released from the calorimeter (Q = ??? J),
m is the mass of the calorimeter (m = 1.4 kg = 1400.0 g),
c is the specific heat capacity of the calorimeter (c = 3.52 J/g °C),
ΔT is the temperature difference (final T - initial T) (ΔT = 27.45 - 28.50 = - 1.05°C).
∵ Q = m.c.ΔT.
∴ Q = m.c.ΔT = (1400.0 g)(3.52 J/g °C)(- 1.05°C) = - 5174.0 J ≅ - 5,170 J.
∴ The amount of heat absorbed by the reaction = 5,170 J.
Answer:
When 40.0 mL of 1.00 M H2SO4 is added to 80.0 mL of 1.00 M NaOH at 20.00°C in a coffee cup calorimeter, the temperature of the aqueous solution increases to 29.20°C. If the mass of the solution is 120.0 g and the specific heat of the calorimeter and solution is 4.184 J/g • °C, how much heat is given off in the reaction? (Ignore the mass of the calorimeter in the calculation.)
Use q equals m C subscript p Delta T..
4.62 kJ
10.0 kJ
14.7 kJ
38.5 kJExplanation: