Respuesta :
Answer:
Hence correct chcie is C.
[tex]f\left(x\right)=(x+4)^{\frac{1}{3}}+4[/tex]
Step-by-step explanation:
Given function is [tex]f\left(x\right)=x^{\frac{1}{3}}[/tex]
Now it says that function is shifted 4 units to the left and 4 units up.
We need to find about which of the given choice is correct for the given transformation.
When f(x) is shifted "h" units left then we write f(x+h)
So [tex]f\left(x\right)=x^{\frac{1}{3}}[/tex] will change to
[tex]f\left(x\right)=(x+4)^{\frac{1}{3}}[/tex]
When f(x) is shifted "h" units up then we write f(x)+h
So [tex]f\left(x\right)=(x+4)^{\frac{1}{3}}[/tex] will change to
[tex]f\left(x\right)=(x+4)^{\frac{1}{3}}+4[/tex]
Answer:
C
Step-by-step explanation:
For a function f(x) = [tex]x^{\frac{1}{3}}[/tex], we have:
- f(x) = [tex](x-b)^{\frac{1}{3}}[/tex] is original translated b units right
- f(x) = [tex](x+b)^{\frac{1}{3}}[/tex] is original translated b units left
- f(x) = [tex]x^{\frac{1}{3}}+c[/tex] is original translated c units up
- f(x) = [tex]x^{\frac{1}{3}}-c[/tex] is original translated c units down
Keeping these translation rules in mind, we can clearly say that 4 units shifted left and 4 units up has the equation [tex]f(x)=(x+4)^{\frac{1}{3}}+4[/tex]
correct answer is C