Please explain your answer as well. THX!!

Answer:
1
Step-by-step explanation:
sec(x)*cos(x) + cos(x)-1/(sec(x))
We know that sex(x) = 1/(cos(x))
substitute it in our expression.
1/(cos(x)) * cos(x) + cos(x) - 1/(1/cos(x)) = 1+cos(x) - cos (x)= 1
ANSWER
A. 1
EXPLANATION
The given trigonometric expression is
[tex] \sec(x) \cos(x) + \cos(x) - \frac{1}{ \sec(x) } [/tex]
Recall and use the following reciprocal identities.
[tex] \frac{1}{ \sec(x) } = \cos(x) [/tex]
and
[tex] \sec(x) = \frac{1}{ \cos(x) } [/tex]
When we apply these identities, we get
[tex] \frac{1}{ \cos(x) } \times \cos(x) + \cos(x) - \cos(x) [/tex]
This simplifies to:
[tex]1 + 0 = 1[/tex]
The correct choice is A