Respuesta :

Answer:

1

Step-by-step explanation:

sec(x)*cos(x) + cos(x)-1/(sec(x))

We know that sex(x) = 1/(cos(x))

substitute it in our expression.

1/(cos(x)) * cos(x) + cos(x) - 1/(1/cos(x)) = 1+cos(x) - cos (x)= 1

ANSWER

A. 1

EXPLANATION

The given trigonometric expression is

[tex] \sec(x) \cos(x) + \cos(x) - \frac{1}{ \sec(x) } [/tex]

Recall and use the following reciprocal identities.

[tex] \frac{1}{ \sec(x) } = \cos(x) [/tex]

and

[tex] \sec(x) = \frac{1}{ \cos(x) } [/tex]

When we apply these identities, we get

[tex] \frac{1}{ \cos(x) } \times \cos(x) + \cos(x) - \cos(x) [/tex]

This simplifies to:

[tex]1 + 0 = 1[/tex]

The correct choice is A