a car is rolling backward when it hits the gas. after 8.25 s it is moving forward at 8.62m/s, and is 12.9m to the right of its starting pount. what was its starting velocity ?

Respuesta :

Explanation:

The given data is as follows.

        Final velocity (v) = 8.62 m/s,         Initial velocity ([tex]v_{o}[/tex]) = ?

         time = 8.25 sec,          distance (s) = 12.9 m

Hence, formula to calculate the initial velocity is as follows.

                   v = [tex]v_{o} + a \times t[/tex]

                 8.62 m/s = [tex]v_{o} + a \times 8.25 s[/tex]

                [tex]v_{o}[/tex] = 8.62 m/s - 8.25a ......... (1)

Also,   s = [tex]v_{o} \times t + \frac{1}{2}a \times t^{2}[/tex] ...... (2)

Therefore, substitute the value of [tex]v_{o}[/tex] from equation (1) into equation (2) as follows.

                s = [tex]v_{o} \times t + \frac{1}{2}a \times t^{2}[/tex]

               s = [tex]8.62 m/s - 8.25a \times t + \frac{1}{2}a \times t^{2}[/tex] ....... (3)  

Now, putting the values of s and t into equation (3) as follows.

         s = [tex]8.62 m/s - 8.25a \times t + \frac{1}{2}a \times t^{2}[/tex]  

        12.9 m = [tex](8.62 m/s - a \times 8.25sec) \times 8.25 s + \frac{1}{2}a \times (8.25 sec)^{2}[/tex]  

               a = 1.71 [tex]m/s^{2}[/tex]  

Therefore, using equation (1) the value of initial velocity will be as follows.

                      [tex]v_{o}[/tex] = [tex]8.62 m/s - 8.25 sec \times a[/tex]

                              = [tex]8.62 m/s - 8.25 sec \times 1.71 m/s^{2}[/tex]

                              = -5.49 m/s

Thus, we can conclude that starting velocity of the car is -5.49 m/s.