Answer:
x = [tex]\frac{1}{4}[/tex]
Step-by-step explanation:
Using the rules of logarithms
• log[tex]x^{n}[/tex] ⇔ n logx
• logx - logy = log([tex]\frac{x}{y}[/tex])
• logx = logy ⇔ x = y
Given
2log2 - 3log2 = log2x
log2² - log2³ = log2x
log4 - log8 = log2x
log[tex]\frac{4}{8}[/tex] = log2x, hence
2x = [tex]\frac{1}{2}[/tex]
x = [tex]\frac{1}{4}[/tex]