Respuesta :

Answer:

1) cos (3x)

2) [tex]\frac{-(1-\sqrt{3})^{2}}{2}[/tex]

Step-by-step explanation:

Given expression:

cos(7x)cos(4x)+sin(7x)sin(4x)

By using the trigonometric identity

cos(a)cos(b) + sin(a)sin(b) = cos(a-b)

we have:

cos(7x)cos(4x)+sin(7x)sin(4x) = cos(7x - 4x)

                                               = cos(3x)!

part 2:

tan (-π/12)

by using property tan(-x)= - tan(x)

=-tan(π/12)

= - tan(π/6 / 2)

Using tan(x/2) = [tex]\sqrt{\frac{1 - cos(x)}{1+cos(x)} }[/tex]

= - [tex]\sqrt{\frac{1 - cos(pi/6)}{1+cos(pi/6)} }[/tex]

cos π/6 = [tex]\frac{\sqrt{3} }{2}[/tex]

= -[tex]\sqrt{\frac{1-\frac{\sqrt{3} }{2} }{1+\frac{\sqrt{3} }{2} } }[/tex]

= - [tex]\sqrt{7-4\sqrt{3} }[/tex]

= - 2+[tex]\sqrt{3}[/tex]

= [tex]-\frac{(1-\sqrt{3}) ^{2} }{2}[/tex]

!