Respuesta :

Answer:

see explanation

Step-by-step explanation:

(3)

Given cosΘ = - [tex]\frac{4}{5}[/tex]

Then by Pythagoras' theorem the third side is 3 ( 3,4, 5 triangle )

Since Θ in second quadrant then sinΘ > 0

sinΘ = [tex]\frac{3}{5}[/tex]

Using the trigonometric identity

sin2Θ = 2sinΘcosΘ, then

sin2Θ = 2 × [tex]\frac{3}{5}[/tex] × - [tex]\frac{4}{5}[/tex] = - [tex]\frac{24}{25}[/tex]

(4)

Using the trigonometric identity

cos(x - y) = cosxcosy + sinxsiny

note cos15° = cos(45 - 30)°

cos(45 - 30) = cos45cos30 + sin45sin30

                    = ( [tex]\frac{\sqrt{2} }{2}[/tex] × [tex]\frac{\sqrt{3} }{2}[/tex]) + ([tex]\frac{\sqrt{2} }{2}[/tex] × [tex]\frac{1}{2}[/tex])

                    = [tex]\frac{\sqrt{2(\sqrt{3}+1) } }{4}[/tex]