Respuesta :

ANSWER

x=24 , y=8√3

EXPLANATION

The given triangle is a right triangle

To find x, we use the cosine ratio, given by:

[tex] \cos(30 \degree) = \frac{adjacent}{hypotenuse} [/tex]

[tex]\cos(30 \degree) = \frac{x}{16 \sqrt{3} } [/tex]

[tex] \frac{ \sqrt{3} }{2} = \frac{x}{16 \sqrt{3} } [/tex]

Solve for x,

[tex]x = \frac{ \sqrt{3} }{2} \times 16 \sqrt{3} [/tex]

[tex]x = 8 \times 3 = 24[/tex]

To find the value of x, we use the sine ratio:

[tex] \sin(30 \degree) = \frac{opposite}{hypotenuse} [/tex]

[tex]\sin(30 \degree) = \frac{y}{16 \sqrt{3} } [/tex]

[tex] \frac{1}{2} = \frac{y}{16 \sqrt{3} } [/tex]

Solve for y to get,

[tex]y = \frac{1}{2} \times 16 \sqrt{3} [/tex]

[tex]y = 8 \sqrt{3} [/tex]