Answer:
[tex]1.34\cdot 10^{-16} C[/tex]
Explanation:
The strength of the electric field produced by a charge Q is given by
[tex]E=k\frac{Q}{r^2}[/tex]
where
Q is the charge
r is the distance from the charge
k is the Coulomb's constant
In this problem, the electric field that can be detected by the fish is
[tex]E=3.00 \mu N/C = 3.00\cdot 10^{-6}N/C[/tex]
and the fish can detect the electric field at a distance of
[tex]r=63.5 cm = 0.635 m[/tex]
Substituting these numbers into the equation and solving for Q, we find the amount of charge needed:
[tex]Q=\frac{Er^2}{k}=\frac{(3.00\cdot 10^{-6} N/C)(0.635 m)^2}{9\cdot 10^9 Nm^2 C^{-2}}=1.34\cdot 10^{-16} C[/tex]