ANSWER
(-1,5)
(7,5)
EXPLANATION
The given set of parametric equations is:
[tex]x = 4t + 3[/tex]
and
[tex]y = 5 {t}^{2} [/tex]
We make t the subject in the first equation to get:
[tex]t = \frac{x - 3}{4} [/tex]
We put this into the second equation to get;
[tex]y =5( \frac{x - 3}{4} )^{2} [/tex]
When x=-1,
[tex]y =5( \frac{ - 1- 3}{4} )^{2} = 5[/tex]
Therefore (-1,5) lies on this line.
When x=7,
[tex]y =5( \frac{7 - 3}{4} )^{2} = 5[/tex]
Therefore (7,5) also lie on this line.