Respuesta :

Answer:

[tex]g(x)=8(2^x)[/tex]

Step-by-step explanation:

Here we are given with parent function [tex]f(x)=2^x[/tex] and the graph which shows that the function g(x).

We are asked to guess the function g(x).

We are given the two coordinates on g(x)

(0,8) and (2,32)

Hence for x = 0 , g(x)= 8

And for x=2, g(x)= 32

Let us say that the translated function is represented by

[tex]g(x)=a2^x+b[/tex]

[tex]g(0)=a\times 2^0+b[/tex]

Hence

[tex]a \times 2^0+b=8[/tex]

[tex]a +b=8[/tex] --------------- (i)

also

[tex]g(2)=32[/tex]

Hence

[tex]a\times 2^2+b=32[/tex]

[tex]4a+b=32[/tex] -------------------(ii)

Subtracting (i) from (ii) we get

[tex]3a=34[/tex]

Hence a = 8

Now putting this value of a in (i)

[tex]8+b=8[/tex]

B=0

Hence [tex]g(x)=8 \times 2^x +0[/tex]

[tex]g(x)=8(2^x)[/tex]