For this case we have by definition that:
[tex](f * g) (x) = f (x) * g (x)[/tex]
In this case we must find[tex](t * s) (x),[/tex] so:
([tex](t * s) (x) = t (x) * s (x) = (4x ^ 2-x + 3) * (x-7) =[/tex]
We must apply distributive property that states that:
[tex](a + b) (c + d) = ac + ad + bc + bd[/tex]
So:
[tex](4x ^ 2-x + 3) * (x-7) = 4x ^ 3-28x ^ 2-x ^ 2 + 7x + 3x-21 = 4x ^ 3-29x ^ 2 + 10x-21[/tex]
Answer:
[tex]4x^3-29x^2+10x-21[/tex]