Respuesta :

Answer:

I'm not sure if your asking for an entire equation but the points for the vertex would be (-3,-4)

ANSWER

[tex]y = - 3( {x + 3)}^{2} - 4[/tex]

EXPLANATION

The given function is

[tex]y = - 3 {x}^{2} - 18x - 31[/tex]

Factor -3

[tex]y = - 3( {x}^{2} + 6x) - 31[/tex]

Add and subtract the square of half the coefficient of x.

[tex]y = - 3( {x}^{2} + 6x + {3}^{2} ) - - 3( {3)}^{2} - 31[/tex]

[tex]y = - 3( {x}^{2} + 6x + {3}^{2} ) + 27 - 31[/tex]

Apply perfect squares,

[tex]y = - 3( {x +3)}^{2} - 4[/tex]

The vertex form is:

[tex]y = - 3( {x +3)}^{2} - 4[/tex]