Respuesta :
Answer: [tex]y=\frac{1}{3}x+3[/tex]
Step-by-step explanation:
The equation of the line is Slope-intercept form is:
[tex]y=mx+b[/tex]
Where "m" is the slope and "b" the y-intercept.
The slopes of perpendicular lines are negative reciprocal.
Then, if the slope of the first line is -3, the slope of the other line must be:
[tex]m=\frac{1}{3}[/tex]
Substitute the point (3,4) into the equation and solve for b:
[tex]4=\frac{1}{3}(3)+b\\ 4-1=b\\b=3[/tex]
Then the equation of this line is:
[tex]y=\frac{1}{3}x+3[/tex]
ANSWER
[tex]y= \frac{1}{3} x + 3[/tex]
EXPLANATION
We want to find the equation of a line which is perpendicular to another line with slope -3 and passes through (3,4).
Our line of interest is has a slope that is the negative reciprocal of -3
[tex]m = - \frac{1}{ - 3} = \frac{1}{3} [/tex]
The equation is given by
[tex]y-y_1=m(x-x_1)[/tex]
We substitute the point and slope to get:
[tex]y-4= \frac{1}{3} (x-3)[/tex]
Expand
[tex]y-4= \frac{1}{3} x-1[/tex]
[tex]y= \frac{1}{3} x-1 + 4[/tex]
[tex]y= \frac{1}{3} x + 3[/tex]