Write the quadratic function f(x) = x2 - 5x + 3 in vertex form.
A) f(x) = (x - 2.5)2 + 3
B) f(x) = (x + 2.5)2 + 3
C) f(x) = (x - 2.5)2 - 3.25
D) f(x) = (x + 2.5)2 - 3.25

Respuesta :

NEDS7

Answer:

C. [tex]f(x) = (x-2.5)^{2}-3.25[/tex]

Step-by-step explanation:

The vertex form for a quadratic function is:

[tex]f(x) = a(x-h)^2+k[/tex]

  • Then, you expand the binomial and get:

[tex]f(x) = a(x^2-2hx +h^2) + k[/tex]

  • Now you distribute and get the first form:

[tex]f(x) = ax^2-2ahx +ah^2 + k[/tex]

  • You know that the general form for a quadratic function is:

[tex]f(x) = ax^2+bx+c, Second\ form[/tex]

  • You compare the two forms that you have and finding h and k:

[tex]ax^2+2ahx +ah^2 + k = ax^2+bx+c[/tex]

  • Finding h from the coefficient of X:

[tex]-2ah = b[/tex]

[tex]h = -\frac{b}{2a}[/tex]

from the quadratic function given you know that a = 1 , b = -5 and c = 3, thus:

[tex]h = -\frac{(-5)}{2(1)}=2.5[/tex]

  • Finding k from the third coefficient:

[tex]ah^2+k = c[/tex]

[tex]Isolate\ k =>\ k = c-ah^2[/tex]

You know c,a and h, so replace the values:

[tex]k = 3-(1)(2.5)^2 \\ k = 3-6.25\\ k = -3.25\\[/tex]

• Finally replace the values for a, h and k in the vertex form:

[tex]f(x) = a(x-h)^2+k\\ f(x) = (1)(x-2.5)^2+(-3.25)\\ f(x) = (x-2.5)^2-3.25[/tex]

So answer is C. [tex]f(x) = (x-2.5)^2-3.25[/tex]