Respuesta :

For this case we have that the distance between two points is:

[tex]d = \sqrt {(x_ {2} -x_ {1}) ^ 2+ (y_ {2} -y_ {1}) ^ 2}[/tex]

We have the following points:

[tex](x_ {1}, y_ {1}) :( 3 \sqrt {2}, 4 \sqrt {3})\\(x_ {2}, y_ {2}) :( 3 \sqrt {2}, - \sqrt {3})[/tex]

Substituting:

[tex]d = \sqrt {(3 \ sqrt {2} -3 \sqrt {2}) ^ 2 + (- \sqrt {3} -4 \sqrt {3}) ^ 2}\\d = \sqrt {(0) ^ 2 + (- 5 \sqrt {3}) ^ 2}\\d = \sqrt {0+ (25 * 3)}\\d = \sqrt {75}\\d = 5 \sqrt {3}\\d = 8.66[/tex]

Answer:

[tex]d = 8.66[/tex]