Respuesta :
The Lagrangian is
[tex]L(x,y,z,\lambda,\mu)=x^2+y^2+z^2+\lambda(4x^2+4y^2-z^2)+\mu(2x+4z-2)[/tex]
with partial derivatives (set equal to 0)
[tex]L_x=2x+8\lambda x+2\mu=0\implies x(1+4\lambda)+\mu=0[/tex]
[tex]L_y=2y+8\lambda y=0\implies y(1+4\lambda)=0[/tex]
[tex]L_z=2z-2\lambda z+4\mu=0\implies z(1-\lambda)+2\mu=0[/tex]
[tex]L_\lambda=4x^2+4y^2-z^2=0[/tex]
[tex]L_\mu=2x+4z-2=0\implies x+2z=1[/tex]
Case 1: If [tex]y=0[/tex], then
[tex]4x^2-z^2=0\implies4x^2=z^2\implies2|x|=|z|[/tex]
Then
[tex]x+2z=1\implies x=1-2z\implies2|1-2z|=|z|\implies z=\dfrac25\text{ or }z=\dfrac23[/tex]
[tex]\implies x=\dfrac15\text{ or }x=-\dfrac13[/tex]
So we have two critical points, [tex]\left(\dfrac15,0,\dfrac25\right)[/tex] and [tex]\left(-\dfrac13,0,\dfrac23\right)[/tex]
Case 2: If [tex]\lambda=-\dfrac14[/tex], then in the first equation we get
[tex]x(1+4\lambda)+\mu=\mu=0[/tex]
and from the third equation,
[tex]z(1-\lambda)+2\mu=\dfrac54z=0\implies z=0[/tex]
Then
[tex]x+2z=1\implies x=1[/tex]
[tex]4x^2+4y^2-z^2=0\implies1+y^2=0[/tex]
but there are no real solutions for [tex]y[/tex], so this case yields no additional critical points.
So at the two critical points we've found, we get extreme values of
[tex]f\left(\dfrac15,0,\dfrac25\right)=\dfrac15[/tex] (min)
and
[tex]f\left(-\dfrac13,0,\dfrac23\right)=\dfrac59[/tex] (max)