Respuesta :

Answer:

Part 1) [tex]HD=\sqrt{105}\ units[/tex]

Part 2) [tex]JD=2\sqrt{34}\ units[/tex]

Part 3) [tex]KD=6\sqrt{2}\ units[/tex]

Step-by-step explanation:

step 1

Find the length HD

In the right triangle HDF

Applying the Pythagoras Theorem

[tex]FD^{2} =HF^{2} +HD^{2}[/tex]

substitute the values and solve for HD

[tex]19^{2} =16^{2} +HD^{2}[/tex]

[tex]HD^{2}=19^{2}-16^{2}[/tex]

[tex]HD^{2}=105[/tex]

[tex]HD=\sqrt{105}\ units[/tex]

step 2

Find the length JD

In the right triangle JDF

Applying the Pythagoras Theorem

[tex]FD^{2} =JD^{2} +FJ^{2}[/tex]

we have

[tex]FD=19\ units[/tex]

[tex]FJ=JG=15\ units[/tex] ----> because JD is a perpendicular bisector

substitute the values and solve for JD

[tex]19^{2} =JD^{2} +15^{2}[/tex]

[tex]JD^{2}=19^{2}-15^{2}[/tex]

[tex]JD^{2}=136[/tex]

[tex]JD=\sqrt{136}\ units[/tex]

[tex]JD=2\sqrt{34}\ units[/tex]

step 3

Find the length KD

In the right triangle KDG

Applying the Pythagoras Theorem

[tex]GD^{2} =KD^{2} +GK^{2}[/tex]

we have

[tex]GD=FD=19\ units[/tex]

[tex]GK=17\ units[/tex]

substitute the values and solve for KD

[tex]19^{2} =KD^{2} +17^{2}[/tex]

[tex]KD^{2}=19^{2}-17^{2}[/tex]

[tex]KD^{2}=72[/tex]

[tex]KD=\sqrt{72}\ units[/tex]

[tex]KD=6\sqrt{2}\ units[/tex]