Respuesta :

[tex]\sin\theta=\dfrac13>0[/tex], so

[tex]\tan\theta=\dfrac{\sin\theta}{\cos\theta}<0\implies\cos\theta<0[/tex]

Recall that

[tex]\cos^2\theta+\sin^2\theta=1[/tex]

for all [tex]\theta[/tex], and knowing that [tex]\cos\theta<0[/tex] we have

[tex]\cos\theta=-\sqrt{1-\sin^2\theta}=-\dfrac{2\sqrt2}3[/tex]