Respuesta :

[tex]\frac{4z^2-16z+15}{2z^2-11z+15}[/tex]   Factor the numerator and the denominator

[ax² + bx + c]

4z² - 16z + 15     Since a > 1, multiply a and c together, then find the factors of (a·c), that adds or subtracts to = b.

(a·c) --> (4 · 15) = 60

Factors of 60:

1 · 60, 2 · 30, 3 · 30, 4 · 15, 5 · 12, 6 · 10  

[The only factor is 6 and 10, (-6) + (-10) = -16] So you substitute -6z - 10z for -16z

4z² - 6z - 10z + 15   Factor out 2z from 4z² - 6z, and factor out -5 from -10z + 15

2z(2z - 3) - 5(2z - 3) Factor out (2z - 3) and your left with:

(2z - 3)(2z - 5)

Do the same for the denominator, and you should get (z - 3)(2z - 5)

Now you have:

[tex]\frac{(2z - 3)(2z-5)}{(z-3)(2z - 5)}[/tex]   You can cancel out (2z - 5)

[tex]\frac{2z - 3}{z-3}[/tex]

ANSWER

[tex]\frac{(2z-3)}{(z-3)} [/tex]

EXPLANATION

The given expression is:

[tex] \frac{4z^2-16z+15}{2z^2-11z+15} [/tex]

Let us split the middle terms to get,

[tex]\frac{4z^2-6z - 10z+15}{2z^2-6z - 5z+15} [/tex]

Factor by grouping:

[tex]\frac{2z(2z-3) - 5(2z - 3)}{2z(z-3) - 5(z - 3)} [/tex]

Factor further:

[tex]\frac{(2z - 5)(2z-3)}{(2z - 5)(z-3)} [/tex]

We cancel the common factors,

[tex]\frac{(2z-3)}{(z-3)} [/tex]

where

[tex]z \ne \frac{5}{2} \: or \: z \ne3[/tex]