Answer:
[tex]y=-2x-1[/tex]
Step-by-step explanation:
Let the first coordinate point be (x_1,y_1) and the second coordinate point be (x_2,y_2)
So
x_1 = -2
y_1 = 3
x_2 = -4
y_2 = 7
Now we can use the formula for equation of line to figure it our.
Equation of line formula is [tex]y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]
Plugging in the known values and arranging in slope-intercept form, we have:
[tex]y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)\\y-3=\frac{7-3}{-4-(-2)}(x-(-2))\\y-3=\frac{4}{-2}(x+2)\\y-3=-2(x+2)\\y-3=-2x-4\\y=-2x-4+3\\y=-2x-1[/tex]
This is the equation of the line passing through the points ( -2, 3) and ( -4, 7)