Respuesta :

Answer:

[tex]m=\frac{\sqrt{3}}{2}[/tex]

Step-by-step explanation:

we know that

The tangent of angle theta is equal to divide the opposite side angle theta by the adjacent side angle theta

[tex]tan(\theta)=\frac{m}{(1/2)}=2m[/tex]

[tex]tan(\theta)=\sqrt{3}[/tex]

so

[tex]2m=\sqrt{3}[/tex]

[tex]m=\frac{\sqrt{3}}{2}[/tex]

The value of m in the figure is given as[tex]\frac{\sqrt{3} }{6}[/tex]

data;

  • tanθ = [tex]\sqrt{3}[/tex]
  • opposite = 1/2
  • adjacent = m

Trigonometric Ratio

In the given question, we have the value of angle and opposite and can easily find the adjacent (m) using the tangent of the angle

[tex]tan\theta = \frac{opposite}{adjacent}\\\sqrt{3} = \frac{\frac{1}{2} }{m} \\m = \frac{\frac{1}{2} }{\sqrt{3} }\\ m =\frac{\sqrt{3} }{6}[/tex]

The value of m in the figure is given as[tex]\frac{\sqrt{3} }{6}[/tex]

Learn more on trigonometric ratios here;

https://brainly.com/question/24349828