In ®A shown below, radius AB is perpendicular to chord XY at point C. If XY=24 and AC=5 cm, what is the radius of the circle?

ANSWER
B. 13cm
EXPLANATION
The radius of the circle becomes the hypotenuse of the right triangle formed.
We can use the Pythagoras Theorem to obtain,
AC²+CY²=r²
This implies that,
r²=5²+12²
r²=25+144
r²=169
Take positive square root to get;
r=√169
r=13
AB and AC are two equal chord of a circle, therefore the centre of the circle lies on the bisector of ∠BAC.
OA is the bisector of ∠BAC.
Again, the internal bisector of an angle divides the opposite sides in the ratio of the sides containing the angle.
P divides BC in the ratio 6:6=1:1.
P is mid-point of BC.
OP ⊥ BC.
In △ ABP, by pythagoras theorem,
AB2=AP2+BP2
BP2=36−AP2 ....(1)
In △ OBP, we have
OB2=OP2+BP2
52=(5−AP)2+BP2
BP2=25−(5−AP)2 .....(2)
From 1 & 2, we get,
36−AP2=25−(5−AP)2
36=10AP
AP=3.6cm
Substitute in equation 1,
BP2=36−(3.6)2=23.04
BP=4.8cm
BC=2×4.8=9.6cm