Respuesta :
ANSWER
[tex] ( {x}^{2} + 9)({x} - 1)(x + 1)[/tex]
EXPLANATION
The given function is
[tex] {x}^{4} + 8 {x}^{2} - 9[/tex]
Split the middle term
[tex] {x}^{4} + 9 {x}^{2} - {x}^{2} - 9[/tex]
Factor by grouping;
[tex]{x}^{2} ( {x}^{2} + 9) -1 ({x}^{2} + 9)[/tex]
Factor further to get:
[tex] ( {x}^{2} + 9)({x}^{2} - 1)[/tex]
Apply difference of two squares to get:
[tex] ( {x}^{2} + 9)({x} - 1)(x + 1)[/tex]
Answer:
[tex](x^2+9)(x-1)(x+1)[/tex]
Step-by-step explanation:
We would need to let u = x^2 and use middle term factorization first. let's do this:
if u = x^2, then x^4 + 8x^2 – 9 would be
u^2+8u-9
Middle term factorization of this is:
(u+9)(u-1)
now replacing back u = x^2:
(x^2+9)(x^2-1)
Using the formula a^2 - b^2 = (a+b)(a-b), we can write (x^2 - 1) as (x+1)(x-1).
So, the final factored form is: (x^2+9)(x-1)(x+1)