Select the correct answer.
To prepare for a triathlon, Amanda starts from position A and rides her bike along a straight road for 12 miles to reach position B. At B, she turns left and rides along another straight road for 15 miles to reach position C. At C, she turns left again and rides 20 miles along a straight road to return to A. In , what are m∠A, m∠B, and m∠C, respectively?

A.
48.35°, 94.94°, 36.71°

B.
35.41°, 67.87°, 76.72°

C.
51.05°, 70.66°, 58.29°

D.
15.97°, 81.89°, 82.14°

Respuesta :

Answer:

A. 48.35°, 94.94°, 36.71°

Step-by-step explanation:

Given,

ABC is a triangle,

In which AB = 12 miles, BC = 15 miles and AC = 20 miles,

By the cosine law,

[tex]BC^2 = AC^2 +AB^2 -2\times AC\times AB\times cos A[/tex]

[tex]2(AC)(AB)cos A=AC^2+AB^2-BC^2[/tex]

[tex]\implies cos A = \frac{AC^2+AB^2-BC^2}{2(AC)(AB)}----(1)[/tex]

Similarly,

[tex]cos B = \frac{BC^2+AB^2-AC^2}{2(BC)(AB)}----(2)[/tex]

[tex]cos C = \frac{BC^2+AC^2-AB^2}{2(AC)(BC)}----(3)[/tex]

By substituting the values in equation (1),

[tex]cos A=\frac{20^2+12^2-15^2}{2(20(12)}=0.66458[/tex]

[tex]\implies m\angle A\approx 48.35^{\circ}[/tex]

Similarly, from equation (2) and (3),

[tex]m\angle B\approx 94.94^{\circ}[/tex]

[tex]m\angle C\approx 36.71^{\circ}[/tex]

Hence, Option 'A' is correct.