Respuesta :
Answer:
[tex]x_1=\frac{3(2+i\sqrt{6})}{10}[/tex]
[tex]x_2=\frac{3(2-i\sqrt{6})}{10}[/tex]
Step-by-step explanation:
Use the Quadratic formula:
[tex]x=\frac{-b\±\sqrt{b^2-4ac}}{2a}[/tex]
You can identify that, in this case:
[tex]a=-10\\b=12\\c=-9[/tex]
Now you need to substitute these values into the formula:
[tex]x=\frac{-12\±\sqrt{12^2-4(-10)(-9)}}{2(-10)}[/tex]
[tex]x=\frac{-12\±\sqrt{-216}}{-20}[/tex]
Remember that:
[tex]i=\sqrt{-1}[/tex]
Therefore,rewriting and simplifying, you get:
[tex]x=\frac{-12\±6i\sqrt{6}}{-20}[/tex]
[tex]x=\frac{-6(2\±i\sqrt{6})}{-2(10)}[/tex]
[tex]x=\frac{3(2\±i\sqrt{6})}{10}[/tex]
Then, you get the following roots:
[tex]x_1=\frac{3(2+i\sqrt{6})}{10}[/tex]
[tex]x_2=\frac{3(2-i\sqrt{6})}{10}[/tex]
Answer:
x = 3[2 + i√-6]/10 or x = 3[2 - i√-6]/10
Step-by-step explanation:
Formula
Solution of a quadratic equation ax² + bx + c = 0
x = [-b ± √(b² - 4ac)]/2a
To find the solution
It is given that,
-10x² + 12x - 9 = 0
here a = -10, b = 12 and c = -9
x = [-b ± √(b² - 4ac)]/2a
= [-12 ± √(12² - 4* -10 * -9)]/2 * -10
= [-12 ± √(144 - 360)]/-20
=[12 ± √-216]/20
= [12 ± i6√-6]/20
= [6 ± i3√-6]/10
= 3[2 ± i√-6]/10
x = 3[2 + i√-6]/10 or x = 3[2 - i√-6]/10