The point (−3, 1) is on the terminal side of angle θ, in standard position. What are the values of sine, cosine, and tangent of θ? Make sure to show all work.

Respuesta :

ANSWER

See below

EXPLANATION

The given point (-3,1) lies in the second quadrant.

In this quadrant only sine is positive.

The length of the hypotenuse formed by the right angle triangle is

[tex] {h}^{2} = {3}^{2} + {1}^{2} [/tex]

[tex] {h}^{2} = 9 + 1[/tex]

[tex]{h}^{2} = 10[/tex]

[tex]h = \sqrt{10} [/tex]

The side opposite to θ, is 1 units.

The adjacent side is 3 units.

[tex] \sin( \theta) = \frac{opposite}{hypotenuse} [/tex]

[tex]\sin( \theta) = \frac{1}{ \sqrt{10} } = \frac{ \sqrt{10} }{10} [/tex]

[tex]\cos( \theta) = - \frac{adjacent}{hypotenuse} [/tex]

[tex]\cos( \theta) = - \frac{3}{ \sqrt{10} } = - \frac{3 \sqrt{10} }{10} [/tex]

[tex] \tan( \theta) = - \frac{opposite}{adjacent} [/tex]

[tex]\tan( \theta) = - \frac{1}{3} [/tex]

The values of sine, cosine and tangent of θ are; 1/√10, -3/√10 and -1/3 respectively.

Sine, Cosine and Tangent of angles

From the task content, it follows from Pythagoras theorem that;

  • hypothenuse = √((-3)²+1²)

  • hypothenuse = √10

On this note;

  • Sin θ = 1/√10

  • Cos θ = (-3)/√10

  • Tan θ = -1/3

Read more on Trigonometric identities;

https://brainly.com/question/20519838