A disk with mass m = 9.5 kg and radius R = 0.3 m begins at rest and accelerates uniformly for t = 18.1 s, to a final angular speed of ω = 28 rad/s. 9) What is the angular acceleration of the disk? rad/s2 10) What is the angular displacement over the 18.1 s? rad 11) What is the moment of inertia of the disk? kg-m2 12) What is the change in rotational energy of the disk? J 13) What is the tangential component of the acceleration of a point on the rim of the disk when the disk has accelerated to half its final angular speed? m/s2 14) What is the magnitude of the radial component of the acceleration of a point on the rim of the disk when the disk has accelerated to half its final angular speed? m/s2 15) What is the final speed of a point on the disk half-way between the center of the disk and the rim? m/s 16) What is the total distance a point on the rim of the disk travels during the 18.1 seconds? m

Respuesta :

9) 1.55 rad/s^2

The angular acceleration of the disk is given by

[tex]\alpha = \frac{\omega_f - \omega_i}{t}[/tex]

where

[tex]\omega_f = 28 rad/s[/tex] is the final angular speed

[tex]\omega_i=0[/tex] is the initial angular speed (the disk starts from rest)

t = 18.1 s is the time interval

Substituting into the equation, we find:

[tex]\alpha = \frac{28.1 rad/s - 0}{18.1 s}=1.55 rad/s^2[/tex]

10) 253.9 rad

The angular displacement of the disk during this time interval is given by the equation:

[tex]\theta = \omega_i t + \frac{1}{2}\alpha t^2[/tex]

where

[tex]\omega_i=0[/tex] is the initial angular speed (the disk starts from rest)

t = 18.1 s is the time interval

[tex]\alpha=1.55 rad/s^2[/tex] is the angular acceleration

Substituting into the equation, we find:

[tex]\theta = 0 + \frac{1}{2}(1.55 rad/s^2)(18.1 s)^2=253.9 rad[/tex]

11) [tex]0.428 kg m^2[/tex]

The moment of inertia of a disk rotating about its axis is given by

[tex]I=\frac{1}{2}mR^2[/tex]

where in this case we have

m = 9.5 kg is the mass of the disk

R = 0.3 m is the radius of the disk

Substituting numbers into the equation, we find

[tex]I=\frac{1}{2}(9.5 kg)(0.3 m)^2=0.428 kg m^2[/tex]

12) 167.8 J

The rotational energy of the disk is given by

[tex]E_R = \frac{1}{2}I\omega^2[/tex]

where

[tex]I=0.428 kg m^2[/tex] is the moment of inertia

[tex]\omega[/tex] is the angular speed

At the beginning, [tex]\omega_i = 0[/tex], so the rotational energy is

[tex]E_i = \frac{1}{2}(0.428 kg m^2)(0)^2 = 0[/tex]

While at the end, the angular speed is [tex]\omega=28 rad/s[/tex], so the rotational energy is

[tex]E_f = \frac{1}{2}(0.428 kg m^2)(28 rad/s)^2=167.8 J[/tex]

So, the change in rotational energy of the disk is

[tex]\Delta E= E_f - E_i = 167.8 J - 0 = 167.8 J[/tex]

13) [tex]0.47 m/s^2[/tex]

The tangential acceleration can be found by using

[tex]a_t = \alpha r[/tex]

where

[tex]\alpha = 1.55 rad/s^2[/tex] is the angular acceleration

r is the distance of the point from the centre of the disk; since the point is on the rim,

r = R = 0.3 m

So the tangential acceleration is

[tex]a_t = (1.55 rad/s^2)(0.3 m)=0.47 m/s^2[/tex]

14) [tex]58.8 m/s^2[/tex]

The radial (centripetal acceleration) is given by

[tex]a_r = \omega^2 r[/tex]

where

[tex]\omega[/tex] is the angular speed, which is half of its final value, so

[tex]\omega=\frac{28 rad/s}{2}=14 rad/s[/tex]

r is the distance of the point from the centre (as before, r = R = 0.3 m)

Substituting numbers into the equation,

[tex]a_r = (14 rad/s)^2 (0.3 m)=58.8 m/s^2[/tex]

15) 4.2 m/s

The tangential speed is given by:

[tex]v=\omega r[/tex]

where

[tex]\omega = 28 rad/s[/tex] is the angular speed

r is the distance of the point from the centre of the disk, so since the point is half-way between the centre of the disk and the rim,

[tex]r=\frac{R}{2}=\frac{0.3 m}{2}=0.15 m[/tex]

So the tangential speed is

[tex]v=(28 rad/s)(0.15 m)=4.2 m/s[/tex]

16) 77.0 m

The total distance travelled by a point on the rim of the disk is

[tex]d=ut + \frac{1}{2}a_t t^2[/tex]

where

u = 0 is the initial tangential speed

t = 18.1 s is the time

[tex]a_t = 0.47 m/s^2[/tex] is the tangential acceleration

Substituting into the equation, we find

[tex]d=0+\frac{1}{2}(0.47 m/s^2)(18.1 s)^2=77.0 m[/tex]

Otras preguntas