Respuesta :

For this case we have that the figure shown is composed of a cylinder and a cone.

We have that the volume of a cylinder is given by:

[tex]V = \pi * r ^ 2 * h[/tex]

Where:

A: It's the radio

h: It's the height

Substituting the values:

[tex]V = \pi * (5) ^ 2 * 10\\V = \pi * 25 * 10\\V = 250 \pi \ m ^ 3[/tex]

On the other hand, the volume of a cone is given by:

[tex]V = \frac {\pi * r ^ 2 * h} {3}[/tex]

Where:

A: It's the radio

h: It's the height

Substituting the values:

[tex]V = \frac {\pi * (5) ^ 2 * 4} {3}\\V = \frac {\pi * 25 * 4} {3}\\V = \frac {100 \pi} {3} \ m ^ 3[/tex]

Then, the total volume is:

[tex]V_ {t} = 250 \pi \ m ^ 3 + \frac {100 \pi} {3} \ m ^ 3[/tex]

Taking [tex]\pi = 3.14[/tex], we have to:

[tex]V_ {t} = 889.67 \ m ^ 3[/tex]

Answer:

Option D