Find the volume of this composite solid.

For this case we have that the figure shown is composed of a cylinder and a cone.
We have that the volume of a cylinder is given by:
[tex]V = \pi * r ^ 2 * h[/tex]
Where:
A: It's the radio
h: It's the height
Substituting the values:
[tex]V = \pi * (5) ^ 2 * 10\\V = \pi * 25 * 10\\V = 250 \pi \ m ^ 3[/tex]
On the other hand, the volume of a cone is given by:
[tex]V = \frac {\pi * r ^ 2 * h} {3}[/tex]
Where:
A: It's the radio
h: It's the height
Substituting the values:
[tex]V = \frac {\pi * (5) ^ 2 * 4} {3}\\V = \frac {\pi * 25 * 4} {3}\\V = \frac {100 \pi} {3} \ m ^ 3[/tex]
Then, the total volume is:
[tex]V_ {t} = 250 \pi \ m ^ 3 + \frac {100 \pi} {3} \ m ^ 3[/tex]
Taking [tex]\pi = 3.14[/tex], we have to:
[tex]V_ {t} = 889.67 \ m ^ 3[/tex]
Answer:
Option D