Respuesta :

Answer:

sorry really blurry sorry too blurry I cannot really read it I'm sorry again

Answer:

[tex]\frac{8x^{10}z}{y^{4}}[/tex]

Step-by-step explanation:

The expression [tex]\frac{(2x^{3}z^{2})^{3}}{x^{3} y^{4}z^{2}.x^{-4}z^{3}}[/tex]

Using laws of exponents

The law that

[tex]x^{m} x^{n} = x^{m+n}[/tex]

Solving in the denominator

[tex]\frac{(2x^{3}z^{2})^{3}}{x^{3} y^{4}z^{2}.x^{-4}z^{3}}=\frac{(2x^{3}z^{2})^{3}}{x^{3-4} y^{4}z^{2+3}}=\frac{(2x^{3}z^{2})^{3}}{x^{-1} y^{4}z^{5}}[/tex]

The law that

[tex](x^{m})^{n} =x^{mn}[/tex]

solving in the numerator

[tex]\frac{(2x^{3}z^{2})^{3}}{x^{-1} y^{4}z^{5}}=\frac{2x^{3.3}z^{2.3}}{x^{-1} y^{4}z^{5}}=\frac{2x^{9}z^{6}}{x^{-1} y^{4}z^{5}}[/tex]

The law that

[tex]\frac{x^{m}}{x^{n}} = x^{m-n}[/tex]

solving the fraction

[tex]\frac{2x^{9}z^{6}}{x^{-1} y^{4}z^{5}}=\frac{2x^{9-(-1)}z^{6-5}}{y^{4}}[/tex]

Resulting

[tex]\frac{8x^{10}z}{y^{4} }[/tex]