Respuesta :

gmany

Answer:

[tex]\large\boxed{x\approx3.1950}[/tex]

Step-by-step explanation:

[tex]\log_ab=c\iff a^c=b\\\\\log_812=x-2\iff8^{x-2}=12\\\\(2^3)^{x-2}=4\cdot3\qquad\text{use}\ (a^n)^m=a^{nm}\\\\2^{3(x-2)}=2^2\cdot3\qquad\text{use the distributive property}\\\\2^{3x-6}=2^2\cdot3\qquad\text{divide both sides by}\ 2^2\\\\\dfrac{2^{3x-6}}{2^2}=3\qquad\text{use}\ \dfrac{a^n}{a^m}=a^{n-m}\\\\2^{3x-6-2}=3\\\\2^{3x-8}=3\qquad\text{logarithm of both sides}\\\\\log_22^{3x-8}=\log_23\qquad\text{use}\ \log_aa^n=n\\\\3x-8=\log_23\qquad\text{add 8 to both sides}[/tex]

[tex]3x=\log_23+8\qquad\text{divide both sides by 3}\\\\x=\dfrac{\log_23+8}{3}\\\\\log_23\approx1.5849625\\\\x\approx\dfrac{1.5849625+8}{3}\approx3.1950[/tex]

Answer:

B

Step-by-step explanation:

edge 2020