If the determinant of this matrix is -19, what is the value of a?
A.
3
B.
4
C.
5
D.
6

Answer:
C)5
Step-by-step explanation:
For a 3x3 matrix [tex]\left[\begin{array}{ccc}a&b&c\\d&e&f\\g&h&i\end{array}\right][/tex]
determinent is given by = = a(ei − fh) − b(di − fg) + c(dh − eg)
Given Matrix
[tex]\left[\begin{array}{ccc}-6&7&1\\a&-3&4\\-6&4&-3\end{array}\right][/tex]
determinent of matrix= -6((-3)(-3) − (4)(4)) − 7(a(-3) − (4)(-6)) + 1(a(4) − (-3)(-6))
-19= -6(9-16) - 7(-3a+24) +4a-18
125= 25a
125/25= 25a/25
a= 5 !
Answer:
a = 5
Step-by-step explanation:
We are given 3 x 3 matrix and the determinant of the matrix is -19.
We need find the value of "a" in the given matrix.
[tex]\left[\begin{array}{ccc}-6&7&1\\a&-3&4\\-6&4&-3\end{array}\right][/tex]
determinant (D) = -6[(-3)(-3) − (4)(4)] − 7[a(-3) − (4)(-6)] + 1[a(4) − (-3)(-6)]
-19 = -6[9 - 16] -7[-3a +24] +1[4a - 18]
-19 = -6[-7] +21a - 168 + 4a - 18
-19 = 42 + 21a -168 + 4a - 18
Simplify the like terms, we get
-19 = 25a - 144
25a = -144 + 19
25a = 125
Dividing both sides by 25, we get
a = [tex]\frac{125}{25}[/tex]
a = 5
So the value of a is 5.