A rocket travels vertically at a speed of 800 km/hr. the rocket is tracked through a telescope by an observer located 13 km from the launching pad. find the rate at which the angle between the telescope and the ground is increasing 3 min after lift-off. (round your answer to two decimal places.)

Respuesta :

The rocket's altitude [tex]y[/tex] at time [tex]t[/tex] is

[tex]y(t)=\left(800\dfrac{\rm km}{\rm h}\right)t[/tex]

so that after [tex]t=3\,\mathrm{min}[/tex], it will have traveled

[tex]y=\left(800\dfrac{\rm km}{\rm h}\right)(3\,\mathrm{min})=40\,\mathrm{km}[/tex]

The angle of elevation [tex]\theta[/tex] at time [tex]t[/tex] is such that

[tex]\tan\theta=\dfrac{y(t)}{13\,\rm km}[/tex]

At the moment when [tex]y(t)=30\,\mathrm{km}[/tex], this angle is

[tex]\tan\theta=\dfrac{30\,\rm km}{13\,\rm km}\implies\theta\approx66.57^\circ[/tex]

Differentiating both sides of the equation above gives

[tex]\sec^2\theta\dfrac{\mathrm d\theta}{\mathrm dt}=\dfrac1{13\,\rm km}\dfrac{\mathrm dy(t)}{\mathrm dt}[/tex]

and substituting the angle [tex]\theta[/tex] found above, and [tex]\dfrac{\mathrm dy(t)}{\mathrm dt}=800\dfrac{\rm km}{\rm h}[/tex], we get

[tex]\sec^2\theta66.57^\circ\dfrac{\mathrm d\theta}{\mathrm dt}=\dfrac1{13\,\mathrm km}\left(800\dfrac{\rm km}{\rm h}\right)[/tex]

[tex]\implies\boxed{\dfrac{\mathrm d\theta}{\mathrm dt}\approx9.73\dfrac{\rm rad}{\rm h}}[/tex]