Respuesta :

Answer:

16. Angle C is approximately 13.0 degrees.

17. The length of segment BC is approximately 45.0.

18. Angle B is approximately 26.0 degrees.

15. The length of segment DF "e" is approximately 12.9.

Step-by-step explanation:

16

By the law of sine, the sine of interior angles of a triangle are proportional to the length of the side opposite to that angle.

For triangle ABC:

  • [tex]\sin{A} = \sin{103\textdegree{}}[/tex],
  • The opposite side of angle A [tex]a = BC = 26[/tex],
  • The angle C is to be found, and
  • The length of the side opposite to angle C [tex]c = AB = 6[/tex].

[tex]\displaystyle \frac{\sin{C}}{\sin{A}} = \frac{c}{a}[/tex].

[tex]\displaystyle \sin{C} = \frac{c}{a}\cdot \sin{A} = \frac{6}{26}\times \sin{103\textdegree}[/tex].

[tex]\displaystyle C = \sin^{-1}{(\sin{C}}) = \sin^{-1}{\left(\frac{c}{a}\cdot \sin{A}\right)} = \sin^{-1}{\left(\frac{6}{26}\times \sin{103\textdegree}}\right)} = 13.0\textdegree{}[/tex].

Note that the inverse sine function here [tex]\sin^{-1}()[/tex] is also known as arcsin.

17

By the law of cosine,

[tex]c^{2} = a^{2} + b^{2} - 2\;a\cdot b\cdot \cos{C}[/tex],

where

  • [tex]a[/tex], [tex]b[/tex], and [tex]c[/tex] are the lengths of sides of triangle ABC, and
  • [tex]\cos{C}[/tex] is the cosine of angle C.

For triangle ABC:

  • [tex]b = 21[/tex],
  • [tex]c = 30[/tex],
  • The length of [tex]a[/tex] (segment BC) is to be found, and
  • The cosine of angle A is [tex]\cos{123\textdegree}[/tex].

Therefore, replace C in the equation with A, and the law of cosine will become:

[tex]a^{2} = b^{2} + c^{2} - 2\;b\cdot c\cdot \cos{A}[/tex].

[tex]\displaystyle \begin{aligned}a &= \sqrt{b^{2} + c^{2} - 2\;b\cdot c\cdot \cos{A}}\\&=\sqrt{21^{2} + 30^{2} - 2\times 21\times 30 \times \cos{123\textdegree}}\\&=45.0 \end{aligned}[/tex].

18

For triangle ABC:

  • [tex]a = 14[/tex],
  • [tex]b = 9[/tex],
  • [tex]c = 6[/tex], and
  • Angle B is to be found.

Start by finding the cosine of angle B. Apply the law of cosine.

[tex]b^{2} = a^{2} + c^{2} - 2\;a\cdot c\cdot \cos{B}[/tex].

[tex]\displaystyle \cos{B} = \frac{a^{2} + c^{2} - b^{2}}{2\;a\cdot c}[/tex].

[tex]\displaystyle B = \cos^{-1}{\left(\frac{a^{2} + c^{2} - b^{2}}{2\;a\cdot c}\right)} = \cos^{-1}{\left(\frac{14^{2} + 6^{2} - 9^{2}}{2\times 14\times 6}\right)} = 26.0\textdegree[/tex].

15

For triangle DEF:

  • The length of segment DF is to be found,
  • The length of segment EF is 9,
  • The sine of angle E is [tex]\sin{64\textdegree}}[/tex], and
  • The sine of angle D is [tex]\sin{39\textdegree}[/tex].

Apply the law of sine:

[tex]\displaystyle \frac{DF}{EF} = \frac{\sin{E}}{\sin{D}}[/tex]

[tex]\displaystyle DF = \frac{\sin{E}}{\sin{D}}\cdot EF = \frac{\sin{64\textdegree}}{39\textdegree} \times 9 = 12.9[/tex].