Answer:
x = i and x = i[tex]\sqrt{5}[/tex]
Step-by-step explanation:
Given
[tex]x^{4}[/tex] + 6x² + 5 = 0
Using the substitution u = x², then
u² + 6u + 5 = 0 ← in standard form
(u + 1)(u + 5) = 0 ← in factored form
Equate each factor to zero and solve for u
u + 1 = 0 ⇒ u = - 1
u + 5 = 0 ⇒ u = - 5
Convert solutions back into terms of x
x² = - 1 ⇒ x = [tex]\sqrt{-1}[/tex] = i
x² = - 5 ⇒ x = [tex]\sqrt{-5}[/tex] = i[tex]\sqrt{5}[/tex]