Match the equations representing parabolas with their directrixes. y + 8 = 3(x + 2)2 y − 14 = -(x − 3)2 y + 7.5 = 2(x + 2.5)2 y − 17 = -(x − 3)2 y + 7 = (x − 4)2 y − 6 = -(x − 1)2 Directrix Equation of Parabola y = -7.25 arrowRight y = 6.25 arrowRight y = 17.25 arrowRight y = 14.25 arrowRight

Respuesta :

Answer:

Part 1) [tex]y+8=3(x+2)^{2}[/tex] -----> [tex]y=-8.08[/tex]

Part 2) [tex]y-14=-(x-3)^{2}[/tex] ---->  [tex]y=14.25[/tex]

Part 3) [tex]y+7.5=2(x+2.5)^{2}[/tex] ---->  [tex]y=-7.625[/tex]

Part 4) [tex]y-17=-(x-3)^{2}[/tex] -----> [tex]y=17.25[/tex]

Part 5) [tex]y+7=(x-4)^{2}[/tex] ----> [tex]y=-7.25[/tex]

Part 6) [tex]y-6=-(x-1)^{2}[/tex] ---->  [tex]y=6.25[/tex]

Step-by-step explanation:

we know that

The equation of a vertical parabola in vertex form is equal to

[tex]y-k=\frac{1}{4p}(x-h)^{2}[/tex]

where

(h,k) is the vertex

The directrix is

[tex]y=k-p[/tex]

case 1) we have

[tex]y+8=3(x+2)^{2}[/tex]

the vertex is the point (-2,-8)  

[tex]\frac{1}{4p}=3[/tex]

[tex]p=\frac{1}{12}[/tex]

The directrix is equal to

[tex]y=-8-\frac{1}{12}=-8.08[/tex]

case 2) we have

[tex]y-14=-(x-3)^{2}[/tex]

the vertex is the point (3,14)  

[tex]\frac{1}{4p}=-1[/tex]

[tex]p=-\frac{1}{4}[/tex]

The directrix is equal to

[tex]y=14+\frac{1}{4}=14.25[/tex]

case 3) we have

[tex]y+7.5=2(x+2.5)^{2}[/tex]

the vertex is the point (-2.5,-7.5)    

[tex]\frac{1}{4p}=2[/tex]

[tex]p=\frac{1}{8}[/tex]    

The directrix is equal to

[tex]y=-7.5-\frac{1}{8}=-7.625[/tex]

case 4) we have

[tex]y-17=-(x-3)^{2}[/tex]

the vertex is the point (3,17)      

[tex]\frac{1}{4p}=-1[/tex]

[tex]p=-\frac{1}{4}[/tex]    

The directrix is equal to

[tex]y=17+\frac{1}{4}=17.25[/tex]

case 5) we have

[tex]y+7=(x-4)^{2}[/tex]

the vertex is the point (4,-7)      

[tex]\frac{1}{4p}=1[/tex]

[tex]p=\frac{1}{4}[/tex]    

The directrix is equal to

[tex]y=-7-\frac{1}{4}=-7.25[/tex]

case 6) we have

[tex]y-6=-(x-1)^{2}[/tex]

the vertex is the point (1,6)      

[tex]\frac{1}{4p}=-1[/tex]

[tex]p=-\frac{1}{4}[/tex]    

The directrix is equal to

[tex]y=6+\frac{1}{4}=6.25[/tex]