In the first second of movement, the body's position [tex]x[/tex] at time [tex]t[/tex] relative to the origin is
[tex]x=\left(27\dfrac{\rm m}{\rm s}\right)t[/tex]
so that after the first second, it will have undergone a displacement of
[tex]x=\left(27\dfrac{\rm m}{\rm s}\right)(1\,\mathrm s)=27\,\mathrm m[/tex]
For every time [tex]t>1[/tex], its position is then given by
[tex]x=27\,\mathrm m+\left(27\dfrac{\rm m}{\rm s}\right)t+\dfrac12\left(-6\dfrac{\rm m}{\mathrm s^2}\right)t^2[/tex]
so that after [tex]t=11[/tex] seconds, it will have undergone a displacement of
[tex]x=27\,\mathrm m+\left(27\dfrac{\rm m}{\rm s}\right)(11\,\mathrm s)+\dfrac12\left(-6\dfrac{\rm m}{\mathrm s^2}\right)(11\,\mathrm s)^2=\boxed{-39\,\mathrm m}[/tex]
so it ends up 39 m to the left of where it started (taking the right of the origin to be the positive [tex]x[/tex] direction).