Respuesta :

X^2+4x+4+12x+24-14=0

x^2+16x+14=0

x= -16 ± √(16)^2-4(1)(14) /2(1)

=-16± √200   /2

-16 ± 2√50    /2

-16 ± 10√2   /2

-8 ± 5√2  

Answer: A) x=-8±5[tex]\sqrt{2}[/tex]

Step-by-step explanation: to find the solutions of the given equation, we need to use the substitution u=x+2, so the equation would now be:

[tex]u^{2} +12u-14=0[/tex]

the quadratic formula is:

u=(-b±[tex]\sqrt{b^{2}-4ac }[/tex])/2a

in this case a=1;  b=12;  and c=-14

so replacing the values it remains:

u=(-12±[tex]\sqrt{12^{2}-4*1*(-14) }[/tex])/2*1

u=(-12±[tex]\sqrt{144+56}[/tex])/2

u=(-12±[tex]\sqrt{200}[/tex])/2              

we can write 200 as 100*2 and the square root of 100 is 10:

u=(-12±10[tex]\sqrt{2}[/tex])/2

u=-6±5[tex]\sqrt{2}[/tex]

and finally:

x=u-2

x=-6±5[tex]\sqrt{2}[/tex]-2

x=-8±5[tex]\sqrt{2}[/tex]