Respuesta :

Answer:

The second alternative is correct

Step-by-step explanation:

We have been given the expression;

[tex](x^{27}y)^{\frac{1}{3}}[/tex]

The above expression can be re-written as;

[tex](x^{27})^{\frac{1}{3}}*y^{\frac{1}{3}}\\\\(x^{27})^{\frac{1}{3}}=x^{27*\frac{1}{3}}=x^{9}[/tex]

On the other hand;

[tex]y^{\frac{1}{3}}=\sqrt[3]{y}[/tex]

Therefore, we have;

[tex]x^{9}\sqrt[3]{y}[/tex]

Answer:

Option 2: [tex]x^{9}(\sqrt[3]{y})[/tex]

Step-by-step explanation:

Given

[tex](x^{27}y )^{\frac{1}{3} }[/tex]

The exponent power will be multiplied with the powers inside the bracket

So,

[tex](x^{27 * \frac{1}{3}} y^{\frac{1}{3}})[/tex]

[tex]= x^{\frac{27}{3}} y^{\frac{1}{3} }[/tex]

[tex]= x^{9} y^{\frac{1}{3}}[/tex]

Writing in radical form will give us:

[tex]x^{9}(\sqrt[3]{y})[/tex]

So,

Option 2 is the correct answer ..