Respuesta :
ANSWER
[tex](4 + 9i)(7 - 4i) = 64 + 47i [/tex]
EXPLANATION
The given complex number expression is:
[tex](4 + 9i)(7 - 4i)[/tex]
We expand using the distributive property to get;
[tex](4 + 9i)(7 - 4i) = 4(7 - 4i) + 9i(7 - 4i)[/tex]
[tex](4 + 9i)(7 - 4i) = 28- 16i + 63i - 36 {i}^{2} [/tex]
Recall that,
[tex] {i}^{2} = - 1[/tex]
Our expression now simplifies to:
[tex](4 + 9i)(7 - 4i) = 28 + 47i + 36 [/tex]
[tex](4 + 9i)(7 - 4i) = 64 + 47i [/tex]
Answer: [tex]64+47i[/tex]
Step-by-step explanation:
Given the Complex numbers multiplication:
[tex](4+9i)(7-4i)[/tex]
You need to follow these steps:
1. Apply Distributive property:
[tex](4+9i)(7-4i)=(4)(7)+(4)(-4i)+(9i)(7)+(9i)(-4i)=28-16i+63i-36i^2[/tex]
2. You need to remember that:
[tex]i=\sqrt{-1}\\\\i^2=-1[/tex]
Then, you need to substitute [tex]i^2=-1[/tex]:
[tex]28-16i+63i-36(-1)=28-16i+63i+36[/tex]
3. Finally, add the like terms:
[tex]64+47i[/tex]