Respuesta :

Answer:

Part 1) Option a. [tex]240\ dices[/tex]

Part 2) Option c. [tex]9.156.24\ pounds[/tex]

Step-by-step explanation:

Part 1)

step 1

Find the volume of one dice

The volume is equal to

[tex]V=b^{3}[/tex]

we have

[tex]b=2\ cm[/tex]

substitute

[tex]V=2^{3}=8\ cm^{3}[/tex]

step 2

Find the volume of the box

The volume is equal to

[tex]V=LWH[/tex]

we have

[tex]L=20\ cm[/tex]

[tex]W=12\ cm[/tex]

[tex]H=8\ cm[/tex]

substitute

[tex]V=20*12*8=1,920\ cm^{3}[/tex]

step 3

Find the number of dices

Divide the volume of the box by the volume of one dice

[tex]1,920/8=240\ dices[/tex]

Part 2)

step 1

Find the volume of the cylinder

The volume is equal to

[tex]V=\pi r^{2} h[/tex]

we have

[tex]r=9\ ft[/tex]

[tex]h=12\ ft[/tex]

assume

[tex]\pi =3.14[/tex]

substitute

[tex]V=(3.14)(9)^{2}(12)[/tex]

[tex]V=3,052.08\ ft^{3}[/tex]

step 2

Find how many pounds of sand will fit into the cylinder

using proportion

[tex]\frac{3}{1}\frac{pounds}{ft^{3}}=\frac{x}{3,052.08}\frac{pounds}{ft^{3}}\\ \\x=3,052.08*3\\ \\x=9.156.24\ pounds[/tex]