If the given sequence is a geometric sequence, find the common ratio.

3/3, 3/12, 3/48, 3/192, 3/768

a. 4

b. 1/30

c. 30

d. 1/4

Respuesta :

Answer:

  d.  1/4

Step-by-step explanation:

The common ratio will be the ratio of any two adjacent terms:

  (3/12)/(3/3) = (1/4)/1 = 1/4

Answer:

d

Step-by-step explanation:

If the sequence is geometric then a common ratio r will exist between consecutive terms.

[tex]\frac{3}{12}[/tex] ÷ 1 = [tex]\frac{3}{12}[/tex] = [tex]\frac{1}{4}[/tex]

[tex]\frac{3}{48}[/tex] ÷ [tex]\frac{3}{12}[/tex] = [tex]\frac{1}{4}[/tex]

[tex]\frac{3}{192}[/tex]  ÷ [tex]\frac{3}{48}[/tex] = [tex]\frac{1}{4}[/tex]

[tex]\frac{3}{768}[/tex] ÷ [tex]\frac{3}{192}[/tex] = [tex]\frac{1}{4}[/tex]

A common ratio of r = [tex]\frac{1}{4}[/tex]

Hence sequence is geometric