Answer:
We are given with a Venn diagram.
In Venn Diagram,
S represent Swam
C represent Built Sandcastles.
n( S - (S∩C) ) = 6
n( C - (S∩C) ) = 4
n( S ∩ C ) = 15
To find: P(S) , P(C) , P(S or C, but not Both) = P((S∪C) - (S∩C)) , P( S ∪ C ) ,
P(S ∩ C) , P(C , but not S ) = P(C - (S∩C))
n(S) = n( S - (S∩C) ) + n(S∩C) = 6 + 15 = 21
n(C) = n( C - (S∩C) ) + n(S∩C) = 4 + 15 = 19
n(S∪C) = n( C - (S∩C) ) + n( S - (S∩C) ) + n(S∩C) = 6 + 4 + 15 = 25
Now, [tex]P(S)=\frac{21}{25}=0.84[/tex]
[tex]P(S\:or\:C,\:but\:not\:Both)=P((S\cup C)-(S\cap C))=\frac{10}{25}=0.40[/tex]
[tex]P(C)=\frac{19}{25}=0.76[/tex]
[tex]P(S\cup C)=\frac{25}{25}=1.00[/tex]
[tex]P(C\:,\:but\:not\:S)=P(C - (S\cap C))=\frac{4}{25}=0.16[/tex]
[tex]P(S\cap C)=\frac{15}{25}=0.60[/tex]
Therefore, Match the answers as above.