Respuesta :

Louli

Answer:

The expressions in ascending order would be:

[tex]\frac{3x^2+1}{2(x-1)} < \frac{x^2-1}{1-2x} < \frac{x^2}{1-2x} < \frac{2x^2+x}{2}[/tex]

At x = -2

Explanation:

First, we will evaluate the given expressions at x = -2

1- The first expression:

[tex]\frac{x^2}{1-2x}=\frac{(-2)^2}{1-2(-2)}=\frac{4}{5}[/tex]

2- The second expression:

[tex]\frac{x^2-1}{1-2x}=\frac{(-2)^2-1}{1-2(-2)}=\frac{3}{5}[/tex]

3- The third expression:

[tex]\frac{2x^2+x}{2}=\frac{2(-2)^2+(-2)}{2}=3[/tex]

4- The fourth expression:

[tex]\frac{3x^2+1}{2(x-1)}=\frac{3(-2)^2+1}{2(-2-1)}=-\frac{13}{6}[/tex]

Then, we will arrange the values in an ascending order:

[tex]-\frac{13}{6} < \frac{3}{5} < \frac{4}{5} < 3[/tex]

Finally, we arrange the expressions based on the value arrangement:

[tex]\frac{3x^2+1}{2(x-1)} < \frac{x^2-1}{1-2x} < \frac{x^2}{1-2x} < \frac{2x^2+x}{2}[/tex]

Hope this helps :)