solve the system .....................

Answer:
The correct answer is first option
(2, 3)
Step-by-step explanation:
It is given that,
3y = -x + 11 and
x + 4y = 14
To find the solutions
The given equation can be written as,
x + 3y = 11 --------(1)
x + 4y = 14 -------(2)
Subtract (1) from (2) we get
y = 3
Substitute vale of y in eq(1)
x + 3*3 = 11
x = 11 - 9 = 2
Therefore x = 2 and y = 3
The correct answer is first option
Answer:
first option
(2, 3)
Step-by-step explanation:
We have the following system of linear equations
[tex]\left \{{{3y=-x+11} \atop {x+4y=14}} \right.[/tex]
This is the same as
[tex]\left \{{{x + 3y=11} \atop {x+4y=14}} \right.[/tex]
To solve the system multiply the first equation by -1 and then add it to the second equation.
[tex]-1*(x+3y)=11*(-1)[/tex]
[tex]-x -3y=-11\\x+4y=14[/tex]
-----------------
[tex]y = 14-11[/tex]
[tex]y = 3[/tex]
substitute [tex]y = 3[/tex] in any of the two equations and then solve for x
[tex]x+4(3)=14\\x+12=14\\x =14-12\\x = 2\\[/tex]
[tex]x =2[/tex]
The answer is the first option
(2, 3)