Respuesta :
Answer:
D 60°
Explanation:
Using trigonometry:
- The new speed (v/2) of the particle corresponds to the hypothenuse
- The component of v/4 represents the side adjacent to the angle that we want fo find, [tex]\theta[/tex]
So we can write:
[tex]cos \theta = \frac{adjacent}{hypothenuse}=\frac{v/4}{v/2}=\frac{1}{2}[/tex]
So we find the angle
[tex]\theta= cos^{-1} (\frac{1}{2})=60^{\circ}[/tex]
Answer:
D 60°
Explanation:
Using trigonometry in the attached image:
[tex]cos\alpha =\frac{v/4}{v/2}[/tex]
[tex]cos\alpha =\frac{1}{2}[/tex]
[tex]\alpha =cos^{-1} \frac{1}{2}[/tex]
Angle=60°
