Answer:
Part A: X=0
Part B: x=0
Step-by-step explanation:
Part A
(6^2)^X = 1
Applying the exponent rule: [tex](a^b)^c = a^{bc}[/tex]
So, our equation will become:
[tex]6^{2X} = 1[/tex]
We know if f(x) = g(x) then ln(f(x))= ln(g(x))
SO, taking natural logarithm ln on both sides and solving.
[tex]ln(6^{2X}) =ln(1)[/tex]
We know,[tex]log(a^b) = b.loga[/tex] Applying the rule,
[tex]2Xln6 =ln(1)\\We\,\,know\,\,ln(1)=0\\2Xln6 =0\\Solving:\\X=0[/tex]
Part B
(6^9)^x = 1
Applying the exponent rule: [tex](a^b)^c = a^{bc}[/tex]
So, our equation will become:
[tex]6^{9x} = 1[/tex]
We know if f(x) = g(x) then ln(f(x))= ln(g(x))
SO, taking natural logarithm ln on both sides and solving.
[tex]ln(6^{9x}) =ln(1)[/tex]
We know,[tex]ln(a^b) = b.lna[/tex] Applying the rule,
[tex]9xln6 =ln(1)\\We\,\,know\,\,ln(1)=0\\9xln6 =0\\Solving:\\x=0[/tex]