Respuesta :

Answer:

[tex]A=5, B=0,C=3[/tex]

Step-by-step explanation:

The partial fraction decomposition is given as:

[tex]\frac{5x^2+3x+54}{(x+3)(x^2+9)} \equiv \frac{A}{x+3}+\frac{Bx+C}{x^2+9}[/tex]

We collect LCD on the RHS to obtain;

[tex]\frac{5x^2+3x+54}{(x+3)(x^2+9)} \equiv \frac{A(x^2+9)+(x+3)(Bx+C)}{(x+3)(x^2+9)}[/tex]

We expand the parenthesis in the numerator of the fraction on the RHS.

[tex]\frac{5x^2+3x+54}{(x+3)(x^2+9)} \equiv \frac{Ax^2+9A+Bx^2+(3B+C)x+3C}{(x+3)(x^2+9)}[/tex]

This implies that:

[tex]\frac{5x^2+3x+54}{(x+3)(x^2+9)} \equiv \frac{(A+B)x^2+(3B+C)x+3C+9A}{(x+3)(x^2+9)}[/tex]

This is now an identity. Since the denominators are equal, the numerators must also be equal.

[tex]5x^2+3x+54=(A+B)x^2+(3B+C)x+3C+9A[/tex]

We compare coefficients of the quadratic terms to get:

[tex]A+B=5\implies B=5-A...(1)[/tex]

Also the coefficients of the linear terms will give us:

[tex]3B+C=3...(2)[/tex]

The constant terms also gives us;

[tex]3C+9A=54...(3)[/tex]

Put equation (1) in to equations (2) and (3).

[tex]3(5-A)+C=3\implies C=3A-12...(4)[/tex]

[tex]3C+9A=54...(5)[/tex]

Put equation (4) into (5).

[tex]3(3A-12)+9A=54[/tex]

[tex]9A-36+9A=54[/tex]

[tex]9A+9A=54+36[/tex]

[tex]18A=90[/tex]

[tex]A=\frac{90}{18} =5[/tex]

Do backward substitution to get:

[tex]C=3(5)-12=3[/tex]

[tex]B=5-5=0[/tex]

[tex]\therefore A=5, B=0,C=3[/tex]