Respuesta :

Answer:

[tex]5 = log_{4}x[/tex]

Step-by-step explanation:

You know that [tex]45=4^{5}[/tex]

Then:  [tex]4^{5}=x[/tex]

Taking log with base 4 in both sides, we have:

[tex]log_{4} 4^{5}=log_{4}x[/tex]

Applying the logarithmic rules, we have:

[tex]log_{4}4^{5}=log_{4}x[/tex]  →   [tex]5log_{4}4=log_{4}x[/tex]

→ [tex]5 = log_{4}x[/tex]

In conclusion, 45 = x expressed as a logarithmic equation equals: [tex]5 = log_{4}x[/tex]

Answer:

[tex]4^5=x[/tex] as a logarithmic equation [tex]\log_4 (x)=5[/tex]

Step-by-step explanation:

Given : Expression [tex]4^5=x[/tex]

To find : Express the expression as a logarithmic equation?

Solution :

Expression [tex]4^5=x[/tex]

Taking log with base 4 both side,

[tex]\log_4(4^5)=\log_4 (x)[/tex]

Using logarithmic property, [tex]\log_a a^b=b[/tex]

[tex]5=\log_4 (x)[/tex]

Therefore, [tex]4^5=x[/tex] as a logarithmic equation [tex]\log_4 (x)=5[/tex]